jueves, 24 de enero de 2008

Diabetes, INSULINA e indice glicemico

La diabetes mellitus es una enfermedad que incapacita al cuerpo para metabolizar o usar eficazmente los carbohidratos, las proteínas y las grasas. Cuando comemos, los alimentos (especialmente carbohidratos y frutas) se convierten en glucosa. Todas las células del cuerpo necesitan glucosa para vivir, pero la glucosa no puede penetrar en las células sin la intervencción de la insulina. La insulina se produce en las células Beta, que están ubicadas en el extremo del páncreas.

Por ejemplo, cuando comemos un pedazo de pan, una vez digerido se convierte en glucosa. La glucosa circula a través de la corriente sanguínea para alimentar a cada célula del cuerpo. La presencia de glucosa estimula las células Beta del páncreas para liberar insulina. La insulina llega hasta cada célula y actúa como una llave en sus receptores, con el fin de abrir sus puertas y dejar a la glucosa entrar . Si no hay insulina o los receptores de las células no funcionan, la glucosa no puede penetrar en las células, y la persona afectada sufrirá de carencias de nutrientes.

Los siguientes gráficos expresan lo que ocurre en las células de nuestros tejidos en presencia de glucosa, en las diferentes situaciones metabólicas en las que podemos encontrarnos:


Cuando la insulina se acopla en los receptores de insulina de las células, la glucosa puede penetrar a través de sus membranas y utilizarse. Esta es la situación normal.

Cuando el páncreas no produce insulina, la glucosa no puede penetrar en las células del cuerpo y utilizarse. Esta es la llamada Diabetes Mellitus Insulinodependiente (IDDM), o Tipo I.

Cuando los receptores de insulina de las células del cuerpo no funcionan, la insulina no puede acoplarse a ellos y la glucosa no puede penetrar en las células del cuerpo y utilizarse. Esta es la llamada Diabetes Mellitus No Insulinodependiente (NIDDM), o Tipo II.


Producción de insulina endógena

Las células Beta fabrican insulina en etapas. La primera etapa es la producción de la proinsulina. La proinsulina es una molécula formada por una cadena proteínica de 81 aminoácidos, que es precursora de la insulina. Las células Beta del páncreas procesan la proinsulina convirtiéndola en insulina por la sustracción enzimática del péptido C, que es una estructura de 30 aminoácidos que conecta las cadenas A y B (de 21 y 30 aminoácidos, respectivamente).

proinsulin molecule Molécula de insulina, compuesta de cadenas tipo A y B

El péptido C no tiene ninguna función conocida. Sin embargo, se segrega en las mismas cantidades que la insulina y, de hecho, circula en la sangre más tiempo que la insulina, por lo que es un preciso marcador cuantitativo del funcionamiento de las células Beta. Así, unos niveles normales de péptidos C indican una secreción relativamente normal del páncreas.

insulin molecule Molécula de insulina, compuesta de cadenas tipo A y B

La insulina se almacena en las células Beta en gránulos secretorios, que se preparan para liberarla en la circulación sanguínea, en respuesta al estímulo de una concentración creciente de glucosa en sangre. Un páncreas funcionando normalmente puede fabricar y liberar diariamente de 40 a 50 unidades de insulina. Además, tiene varios cientos unidades almacenadas y disponibles para ser segregadas cuando se necesitan.



La función de la insulina sobre con la glucosa

overview of the flowLa glucosa es el combustible primario para todos los tejidos de cuerpo. El cerebro usa en torno al 25% de la glucosa total de cuerpo. Sin embargo, debido a que el cerebro almacena muy poca glucosa, siempre tiene que haber un abastecimiento constante y controlado de glucosa disponible en la corriente sanguínea. El objetivo es mantener al cerebro funcionando adecuadamente. En este sentido, es de vital importancia que el nivel de glucosa en sangre se mantenga en un rango de 60 a 120 mg/dl, con el fin de prevenir una falta de sumistro al sistema nervioso.

different tissue types in body

La insulina es la principal hormona que regula los niveles de glucosa en sangre. Su función es controlar la velocidad a la que la glucosa se consume en las células del músculo, tejido graso e hígado.

Cada uno de estos tipos de células del cuerpo usan la glucosa de una manera diferente. Este uso está determinado por el sistema enzimático específico de cada una. El tratamiento de la diabetes se basa en la interacción de la insulina y otras hormonas con los procesos celulares de estos tres tipos de células del cuerpo.

La glucosa es el estímulo más importante para la secreción de insulina.

La grasa

fat iconLa función primaria de la célula del tejido adiposo es almacenar energía en forma de grasa. Estas células contienen enzimas únicos que convierten la glucosa en triglicéridos y posteriormente los triglicéridos en ácidos grasos, que son liberados y convertidos en cuerpos cetónicos según el hígado los va necesitando. Tanto la conversión de glucosa a triglicéridos como la ruptura de los triglicéridos a ácidos grasos son regulados por la insulina. La insulina también inhibe la lipasa, un enzima que descompone la grasa almacenada en glicerol y ácido grasos. Por lo tanto, regulando la captación de glucosa en las células grasas, la insulina influye en el metabolismo de las grasas. En ausencia de insulina, las células grasas segregan de forma pasiva la grasa almacenada en grandes cantidades, por lo que no se metabolizan completamente y conducen al diabético a la cetoacidosis.

Músculo

muscle iconCon respecto al metabolismo de la insulina, las células del músculo tienen dos funciones primarias:

Convertir la glucosa en la energía que necesita el músculo para funcionar.
Servir como un depósito de proteína y glucógeno.

Como el tejido graso, el músculo necesita que la insulina facilite el transporte de la glucosa a través de la membrana de la célula. La célula del músculo tiene sus enzimas propias para controlar los dos caminos metabólicos hasta la glucosa: su conversión en energía contractil y su conversión en glucógeno. Cuando el nivel de glucosa en sangre es normal, la insulina también influye sobre las enzimas de las células del músculo al favorecer la captación de aminoácidos e impedir la utilización de la proteína propia.

El hígado

liver iconEl glucógeno del hígado es otra forma de almacenamiento de glucosa. Es mucho más fácil disponer del glucógeno para obtener energía que de los triglicéridos, que primero tienen que ser convertidos en ácidos grasos y, posteriormente, en cuerpos cetónicos. El hígado controla estas conversiones y también convierte los aminoácidos en glucosa si es necesario. Este último proceso se llama la gluconeogénesis (formación de nueva glucosa).

Aunque la insulina no sea necessaría para el transporte de la glucosa al hígado, afecta directamente la capacidad del hígado para aumentar la captación de la glucosa al reducir el valor de glucogenólisis (la conversión de glucógeno en glucosa), aumentando la síntesis de glucógeno, y disminuyendo el valor de gluconeogénesis.

Las células Beta del páncreas controlan el nivel de glucosa. En primer lugar, sirven como un sensor de los cambios del nivel de glucosa en sangre y, después, segregan la insulina necesaria para regular la captación de carbohidratos y mantener los niveles de glucosa dentro de un margen muy estrecho. Existe un sistema de retroalimentación por medio del cual una pequeña cantidad de carbohidratos estimula las células Beta para liberar una cantidad también pequeña de insulina. El hígado responde al aumento de la secreción de insulina suprimiendo la conversión de glucógeno (glucogenólisis). Asimismo, la formación de glucosa se paraliza.

Aunque el proceso de estimulación de las células Beta y la secreción de insulina no se comprenda completamente, se sabe que el metabolismo provoca la síntesis de glucosa mediante un precursor de la insulina llamado proinsulina. La proinsulina se transforma en la insulina dentro de las célula Beta y esta insulina se almacena entonces en gránulos y se libera en respuesta a ciertos estímulos. La glucosa es el estímulo más importante para la secreción de insulina.

Otros estímulos pueden ser:

Aminoácidos
Hormonas tales como:
Adrenocorticoides
Glucocorticoides
Tiroxina
Estrógeno
ACTH
Hormona del crecimiento
Estimulación vagal
Sulfonilurea (droga)
Cuerpos cetónicos
Points to Remember

Cuando las Células Beta están afectadas y sólo permanecen en buen estado entre un 10% y un 20%, los síntomas de diabetes aparecen


¿Qué es el índice glucémico?

Cuando tomamos cualquier alimento rico en glúcidos, los niveles de glucosa en sangre se incrementan progresivamente según se digieren y asimilan los almidones y azúcares que contienen. La velocidad a la que se digieren y asimilan los diferentes alimentos depende del tipo de nutrientes que los componen, de la cantidad de fibra presente y de la composición del resto de alimentos presentes en el estómago e intestino durante la digestión.

Estos aspectos se valoran a través del índice glucémico de un alimento. Dicho índice es la relación entre el área de la curva de la absorción de la ingesta de 50 gr. de glucosa pura a lo largo del tiempo, con la obtenida al ingerir la misma cantidad de ese alimento.

Curva del indice glucemicoEl índice glucémico se determina en laboratorios bajo condiciones controladas. El proceso consiste en tomar cada poco tiempo muestras de sangre a una persona a la que se le ha hecho consumir soluciones de glucosa pura unas veces y el alimento en cuestión otras. A pesar de ser bastante complicado de determinar, su interpretación es muy sencilla: los índices elevados implican una rápida absorción, mientras que los índices bajos indican una absorción pausada.

Este índice es de gran importancia para los diabéticos, ya que deben evitar las subidas rápidas de glucosa en sangre.


Problemas ocasionados por los alimentos de elevado índice glucémico

Funciones de la InsulinaEn primer lugar, al aumentar rápidamente el nivel de glucosa en sangre se segrega insulina en grandes cantidades, pero como las células no pueden quemar adecuadamente toda la glucosa, el metabolismo de las grasas se activa y comienza a transformarla en grasas. Estas grasas se almacenan en la células del tejido adiposo. Nuestro código genético está programado de esta manera para permitirnos sobrevivir mejor a los períodos de escasez de alimentos. En una sociedad como la nuestra, en la que nunca llega el período de hambruna posterior al atracón, todas las reservas grasas se quedan sin utilizar y nos volvemos obesos.

Posteriormente, toda esa insulina que hemos segregado consigue que el azúcar abandone la corriente sanguínea y, dos o tres horas después, el azúcar en sangre cae por debajo de lo normal y pasamos a un estado de hipoglucemia. Cuando esto sucede, el funcionamiento de nuestro cuerpo y el de nuestra cabeza no están a la par, y sentimos la necesidad de devorar más alimento. Si volvemos a comer más carbohidratos, para calmar la sensación de hambre ocasionada por la rápida bajada de la glucosa, volvemos a segregar otra gran dosis de insulina, y así entramos en un círculo vicioso que se repetirá una y otra vez cada pocas horas.

Este proceso se le aplica al ganado para conseguir un engorde artificial a base de suministrarle dosis periódicas de insulina. De hecho, algunos científicos han llamado a la insulina "la hormona del hambre".

Points to Remember

"Los carbohidratos de alto índice glucémico pueden ocasionar problemas importantes en el control de la diabetes y en el de la formación de grasas"


Tabla de índices glucémicos de los principales alimentos

Sustituyendo los carbohidratos de bajo índice glucémico, especialmente en las meriendas o comidas aisladas, podemos mejorar la regulación del azúcar en sangre, reducir la secreción de insulina y ayudar a un programa de pérdida de peso. La tabla siguiente puede consultarse para elegir los alimentos de menor índice glucémico.

    INDICE          ALIMENTO
--------- ----------------

110 . . . . . Maltosa
100 . . . . . GLUCOSA
92 . . . . . . Zanahorias cocidas
87 . . . . . . Miel
80 . . . . . . Puré de patatas instantáneo
80 . . . . . . Maíz en copos
72 . . . . . . Arroz blanco
70 . . . . . . Patatas cocidas
69 . . . . . . Pan blanco
68 . . . . . . Barritas Mars
67 . . . . . . Sémola de trigo
66 . . . . . . Muesli suizo
66 . . . . . . Arroz integral
64 . . . . . . Pasas
64 . . . . . . Remolachas
62 . . . . . . Plátanos
59 . . . . . . Azúcar blanco (SACAROSA)
59 . . . . . . Maíz dulce
59 . . . . . . Pasteles
51 . . . . . . Guisantes verdes
51 . . . . . . Patatas fritas
51 . . . . . . Patatas dulces (boniatos)
50 . . . . . . Espaguetis de harina refinada
45 . . . . . . Uvas
42 . . . . . . Pan de centeno integral
42 . . . . . . Espaguetis de trigo integral
40 . . . . . . Naranjas
39 . . . . . . Manzanas
38 . . . . . . Tomates
36 . . . . . . Helados
36 . . . . . . Garbanzos
36 . . . . . . Yogur
34 . . . . . . Leche entera
32 . . . . . . Leche desnatada
29 . . . . . . Judías
29 . . . . . . Lentejas
34 . . . . . . Peras
28 . . . . . . Salchichas
26 . . . . . . Melocotones
26 . . . . . . Pomelo
25 . . . . . . Ciruelas
23 . . . . . . Cerezas
20 . . . . . . FRUCTOSA
15 . . . . . . Soja
13 . . . . . . Cacahuetes



fUENTE: uNED

No hay comentarios: